5,171 research outputs found

    A next generation manufacturing control system for a lean production environment

    Get PDF
    This thesis focuses on addressing the need for a new approach to the design and implementation of manufacturing control systems for the automotive industry and in particular for high volume engine manufacture. Whilst the operational domain in the automotive industry has moved to lean production techniques, the design of presentday manufacturing control systems is still based on systems intended for use in a mass production environment. The design and implementation of current manufacturing control systems is therefore inappropriate when viewed from a business context. The author proposes that it is possible to create a more appropriate manufacturing control systems based on an optimised use of advanced manufacturing technology within the complete business context. Literature is reviewed to provide a detailed understanding of the relationship between modem operating practices and the application of contemporary control systems. The primary tasks of manufacturing control systems, within the context of a structured systems approach to manufacturing technology, production management and industrial economics are identified. A study of modem manufacturing control system technology is carried out, highlighting the fundamental principles that influence application engineering in this area. The thesis develops a conceptual design framework that aids the identification of attributes required of a next generation manufacturing control system (NGCS), in order to enhance the business performance of lean automotive manufacturing. The architecture for a next generation control system is specified and a Proof of concept system implemented. Potential advances over contemporary practice are identified with the aid of a practical implementation at a major automotive manufacturer

    Realising the open virtual commissioning of modular automation systems

    Get PDF
    To address the challenges in the automotive industry posed by the need to rapidly manufacture more product variants, and the resultant need for more adaptable production systems, radical changes are now required in the way in which such systems are developed and implemented. In this context, two enabling approaches for achieving more agile manufacturing, namely modular automation systems and virtual commissioning, are briefly reviewed in this contribution. Ongoing research conducted at Loughborough University which aims to provide a modular approach to automation systems design coupled with a virtual engineering toolset for the (re)configuration of such manufacturing automation systems is reported. The problems faced in the virtual commissioning of modular automation systems are outlined. AutomationML - an emerging neutral data format which has potential to address integration problems is discussed. The paper proposes and illustrates a collaborative framework in which AutomationML is adopted for the data exchange and data representation of related models to enable efficient open virtual prototype construction and virtual commissioning of modular automation systems. A case study is provided to show how to create the data model based on AutomationML for describing a modular automation system

    Resolved Depletion Zones and Spatial Differentiation of N2H+ and N2D+

    Full text link
    We present a study on the spatial distribution of N2D+ and N2H+ in thirteen protostellar systems. Eight of thirteen objects observed with the IRAM 30m telescope show relative offsets between the peak N2D+ (J=2-1) and N2H+ (J=1-0) emission. We highlight the case of L1157 using interferometric observations from the Submillimeter Array and Plateau de Bure Interferometer of the N2D+ (J=3-2) and N2H+ (J=1-0) transitions respectively. Depletion of N2D+ in L1157 is clearly observed inside a radius of ~2000 AU (7") and the N2H+ emission is resolved into two peaks at radii of ~1000 AU (3.5"), inside the depletion region of N2D+. Chemical models predict a depletion zone in N2H+ and N2D+ due to destruction of H2D+ at T ~ 20 K and the evaporation of CO off dust grains at the same temperature. However, the abundance offsets of 1000 AU between the two species are not reproduced by chemical models, including a model that follows the infall of the protostellar envelope. The average abundance ratios of N2D+ to N2H+ have been shown to decrease as protostars evolve by Emprechtinger et al., but this is the first time depletion zones of N2D+ have been spatially resolved. We suggest that the difference in depletion zone radii for N2H+ and N2D+ is caused by either the CO evaporation temperature being above 20 K or an H2 ortho-to-para ratio gradient in the inner envelope.Comment: Accepted to ApJ. 44 pages 13 Figure
    corecore